
T E C H N O L O G Y I N A C T I O N ™

Raspbian OS
Programming with
the Raspberry Pi

IoT Projects with Wolfram,
Mathematica, and Scratch
—
Agus Kurniawan

Raspbian OS
Programming with the

Raspberry Pi
IoT Projects with Wolfram,
Mathematica, and Scratch

Agus Kurniawan

Raspbian OS Programming with the Raspberry Pi: IoT Projects with

Wolfram, Mathematica, and Scratch

ISBN-13 (pbk): 978-1-4842-4211-7		 ISBN-13 (electronic): 978-1-4842-4212-4	
https://doi.org/10.1007/978-1-4842-4212-4

Library of Congress Control Number: 2018964829

Copyright © 2019 by Agus Kurniawan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4211-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Agus Kurniawan
Depok, Indonesia

https://doi.org/10.1007/978-1-4842-4212-4

iii

Table of Contents

Chapter 1: �Introduction to Raspberry Pi��1

1.1�� What Is Raspberry Pi?��2

1.2�� Reviewing the Raspberry Pi Board Models��3

1.3�� Introducing the Raspbian OS���5

1.4�� Setting Up Raspbian OS on Raspberry Pi Boards���7

1.5� �Headless Raspbian SSH Network Setup��8

1.6�� Expanding Storage���10

1.7�� Configuring a WiFi Network���12

1.8�� Exploring the Raspbian OS Desktop and Terminal���13

1.9�� Configuring the VNC Server���16

1.9.1�� Installing the VNC Server���17

1.9.2�� Enabling the VNC Server��17

1.9.3�� Configuring Boot Options for the Desktop���19

1.9.4�� Testing the Server��21

1.10�� Powering Off the Raspbian��24

1.11�� Summary���25

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

iv

Chapter 2: �The Raspbian OS Command Line��27

2.1�� Introducing Raspbian Shells��28

2.2�� The Basic Raspbian Shell���30

2.2.1�� Rebooting Raspbian OS���30

2.2.2�� Shutting Down���30

2.2.3�� Configuring the Timezone��31

2.2.4�� Configuring the Keyboard��33

2.3 ��Manipulating Files and Directories��34

2.3.1�� Getting the Current Working Directory���34

2.3.2�� Listing Files and Directories��34

2.3.3�� Understanding the ls Parameters��37

2.3.4�� Changing the Current Working Directory���38

2.3.5�� Creating a Directory���42

2.3.6�� Removing Files and Directories���44

2.3.7�� Copying Files and Directories��46

2.3.8�� Moving Files and Directories���50

2.3.9�� Creating Symbolic Links��52

2.4�� Redirection���53

2.4.1�� Standard Output��53

2.4.2�� Standard Input���54

2.4.3�� Standard Error���55

2.4.4�� Pipelines��56

2.5�� Permissions���57

2.5.1�� Understanding Permissions���57

2.5.2�� chmod��61

2.5.3�� chown��63

Table of ContentsTable of Contents

v

2.6�� Manipulating Processes���64

2.6.1�� ps���64

2.6.2�� top���68

2.6.3�� Killing Processes���70

2.6.4�� Viewing Memory��71

2.7�� Media Storage��72

2.7.1�� Displaying Free Disk Space���72

2.7.2�� mount��73

2.7.3�� umount��77

2.8�� Summary���77

Chapter 3: �Programming on Raspbian OS���79

3.1�� Understand the Programming Model in Raspbian OS������������������������������������79

3.2�� Setting Up the Programming Environment��83

3.3�� Python Programming���83

3.3.1�� Python 3 (IDLE)��84

3.3.2�� Thonny Python IDE���85

3.3.3�� Python Shell from Remote SSH���88

3.3.4�� What’s Next?��90

3.4�� Node.js Programming��90

3.5�� C/C++ Programming��94

3.6�� Summary���96

Chapter 4: Computational Mathematics with the Wolfram
Language and Mathematica��97

4.1�� Introducing Wolfram Language and Mathematica���98

4.2�� Setting Up Wolfram and Mathematica���101

4.3�� Developing a Hello World Program���102

Table of ContentsTable of Contents

vi

4.4�� Basic Programming��103

4.4.1�� Data Types and Declaring Variables��104

4.4.2�� Arithmetic Operators���105

4.4.3�� Relational and Logical Operators���106

4.4.4�� Conditional Statements���108

4.4.5�� Looping��111

4.4.6�� Adding Comments���116

4.4.7�� Functions���117

4.5�� Computational Mathematics��119

4.5.1�� Calculus���119

4.5.2�� Matrix��132

4.5.3�� Quadratic Equations��137

4.5.4�� Linear Equations��138

4.6�� Summary���140

Chapter 5: �Visual Programming with Scratch�����������������������������������141

5.1�� Introducing Visual Programming and Scratch��142

5.2 ��Setting Up Scratch���143

5.3�� Developing a Hello Program���143

5.3.1�� Creating a Project��143

5.3.2�� Building a Scratch Program���145

5.3.3�� Running the Program��148

5.3.4�� Saving a Program Into a File���149

5.4�� Working with Sprites��150

5.5�� Working with the Background��155

Table of ContentsTable of Contents

vii

5.6�� Working with Motion��159

5.6.1�� Coordinate System and Direction��160

5.6.2�� Demo 1: Movement��162

5.6.3�� Demo 2: Direction��163

5.7�� Working with Control Blocks��165

5.7.1�� Building a Decision��165

5.7.2�� Looping��173

5.8�� Summary���175

�Index��177

Table of ContentsTable of Contents

ix

About the Author

Agus Kurniawan is a lecturer, researcher, IT consultant, and an author. He

has 17 years of experience in various software and hardware development

projects, delivering materials in training and workshops, and technical

writing. He has been awarded the Microsoft Most Valuable Professional

(MVP) award 14 years in a row. 

His topic interests are software engineering, embedded system,

networking, and security system. He has been working as lecturer and

researcher at the Faculty of Computer Science, Universitas Indonesia.

Currently, he is pursuing a PhD in computer science at the Freie

Universität Berlin, Germany. He can be reached on his blog at

http://blog.aguskurniawan.net and Twitter at @agusk2010.

http://blog.aguskurniawan.net/

xi

About the Technical Reviewer

Massimo Nardone has more than 22 years of experiences in security, web/

mobile development, cloud, and IT architecture. His true IT passions are

security and Android. 

He has been programming and teaching how to program with Android,

Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science degree in Computing Science from the

University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research

Engineer, Chief Security Architect, Information Security Manager, PCI/

SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for

many years.

Technical skills include: Security, Android, Cloud, Java, MySQL,

Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,

Scratch, etc.

He currently works as Chief Information Security Office (CISO) for

Cargotec Oyj.

xiii

Acknowledgments

We would like to thank Apress for all their help in making this book

possible. Specifically, we would like to thank Aaron Black, our acquisitions

editor, and Jessica Vakili, our coordinating editor, for helping us complete

the Raspbian book.

Special thanks to our development editor, James Markham, and

technical reviewers, Chaim Krause and Massimo Nardone, for all of their

suggestions during the editorial review process that helped make this a

great book.

We would also like to thank the Raspberry Pi and Raspbian

communities anywhere in the world for contributing and making learning

Raspberry Pi with Raspbian easy.

Last but not least, a thank you to my wife, Ela and my children, Thariq

and Zahra, for their great support while I completed this book.

xv

Introduction

Raspberry Pi is a mini computer that you can operate as a normal

computer. The Raspberry Pi board is one of recommended development

boards with IoT platforms. There are many features on the Raspbian OS

and Raspberry Pi boards that you can use to build IoT programs in various

scenarios. Raspberry Pi is designed to enable you to scale its capabilities

through GPIO pins that are suitable for your business and research needs.

Raspbian OS Programming with the Raspberry Pi is a quick reference

to build programs on top of the Raspbian OS on a Raspberry Pi board.

You’ll start by learning Raspbian shells to develop programs. You will go

through a step-by-step guide with project samples to learn the ins and outs

of the Raspbian OS development. You will also learn about the Wolfram

language, Mathematica, and Scratch.

�Who This Book Is For
This book is designed for anyone who wants to get started with Raspberry

Pi and Raspbian. Readers do not need knowledge of the Linux OS or of

embedded systems.

�How This Book Is Organized
This book is designed with a step-by-step approach. You will learn how

to set up Raspbian on a Raspberry Pi board. You will also learn how to

develop programs on Raspbian. This book explains how to work with

Wolfram, Mathematica, and Scratch. Some scenario problems are

provided so you can practice during the learning process.

xvi

�Required Software, Materials,
and Equipment
In general, you need a Raspberry Pi 3 board and a microSD card with

Raspbian OS installed. All required software in this book is installed with

the Raspbian OS.

IntroductionIntroduction

1© Agus Kurniawan 2019
A. Kurniawan, Raspbian OS Programming with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4212-4_1

CHAPTER 1

Introduction
to Raspberry Pi
Raspberry Pi is a development board that can be applied to build IoT

applications. Various sensors and actuator devices can be attached to the

board. In this chapter, we explore Raspberry Pi and cover its models.

We also learn how to set up the board for the first time.

The following list of topics is covered in this chapter:

•	 Learn about the Raspberry Pi

•	 Review the Raspberry Pi models

•	 Learn about the Raspbian OS

•	 Set up Raspbian OS on a Raspberry Pi board

•	 Perform headless Raspbian SSH network setup

•	 Configure a WiFi network

•	 Explore the Raspbian OS desktop

•	 Configure the VNC server

•	 Learn to power off the Raspbian

2

1.1  �What Is Raspberry Pi?
Raspberry Pi is a mini computer that you can operate as a normal

computer. This board was developed by Raspberry Pi Foundation in

the UK. Currently, Raspberry Pi runs on the top of an ARM processor.

Raspberry Pi is not a PC, so we couldn’t expect more in computation.

Raspberry Pi is designed to be small in size to perform some processes.

The small form size of the Raspberry Pi form has advantages. We can put

sensor and actuator devices on the Raspberry Pi board and then perform

measurement and sensing.

The first Raspberry Pi Model B board was released in February 2012.

The latest model is the Raspberry Pi 3 B+ board and it was released in

March 2018. You can see this board in Figure 1-1. This board can run an

operating system to perform computations.

Figure 1-1.  Raspberry Pi 3 B+ board

The Raspberry Pi board usually exposes GPIO pins, to which we can

attach sensors or actuator devices. Some Raspberry Pi models also provide

network stacks such as Ethernet, WiFi, and Bluetooth. Raspberry Pi can

also be connected to monitor through an HDMI connector.

Chapter 1 Introduction to Raspberry Pi

3

Various operating systems can be applied to Raspberry Pi boards. A list

of supported operating systems for Raspberry Pi can be found at this site:

https://www.raspberrypi.org/downloads/. Raspbian OS is the official

operating system of the Raspberry Pi. This book focuses on Raspbian OS

for implementation and evaluation.

1.2  �Reviewing the Raspberry Pi Board
Models

There are several Raspberry Pi models that we can use to perform specific

purposes. The latest model as I am writing this book is Raspberry Pi 3

Model B+. This board consists of Broadcom BCM2837B0, Cortex-A53

(ARMv8) 64-bit SoC @ 1.4GHz, with 1GB LPDDR2 SDRAM. The board

also provides Ethernet, WiFi, and Bluetooth 4.2 (BLE). You can see the

Raspberry Pi 3 Model B+ board in Figure 1-1. For further information

about Raspberry Pi 3 Model B+, see https://www.raspberrypi.org/

products/raspberry-pi-3-model-b-plus/.

If you have concerns about hardware size, Raspberry Pi Foundation

has an even smaller version, which is half the size of a credit card. It is

called the Raspberry Pi Zero. There are two models—Raspberry Pi Zero and

Raspberry Pi Zero Wireless. The first model was released in November 2015.

The last model that has a WiFi module was released in February 2017. Both

models run Broadcom BCM2835 MCU with 512MB RAM. You can see the

Raspberry Pi Zero Wireless board form in Figure 1-2.

Chapter 1 Introduction to Raspberry Pi

https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

4

You also can see and compare several Raspberry Pi models based on

processor, RAM, and network module availability in Table 1-1.

Table 1-1.  Raspberry Pi Model Comparison

Raspberry Pi Model Processor RAM Network Modules

Raspberry Pi 3 B+ Broadcom BCM2837B0 1GB Ethernet, WiFi, BLE

Raspberry Pi Zero Wireless Broadcom BCM2835 512MB WiFi

Raspberry Pi 3 Broadcom BCM2837 1GB Ethernet, WiFi, BLE

Raspberry Pi Zero Broadcom BCM2835 512MB -

Raspberry Pi 2 Broadcom BCM2836 1GB Ethernet

Raspberry Pi A+ Broadcom BCM2835 256MB -

Raspberry Pi B Broadcom BCM2835 512MB Ethernet

Figure 1-2.  Raspberry Pi Zero Wireless board

Chapter 1 Introduction to Raspberry Pi

5

Technically, all the Raspberry Pi models that are shown in Table 1-1

are designed for personal makers and hobbyists. There are limited GPIO

pins on each Raspberry Pi model. If you need more GPIO pins on the

board, you can extend it using GPIO extender modules. The Raspberry Pi

Foundation also released the Raspberry Pi model for industry purposes. It

is called the Raspberry Pi Compute Module. Currently, the latest model is

Raspberry Pi Compute Module V3.

Raspberry Pi Compute Module V3 board hosts 120 GPIO pins, an

HDMI port, a USB port, two camera ports, and two display ports. You

can see the board form in Figure 1-3. For further information about the

Raspberry Pi Compute Module V3, visit the official website at http://

socialcompare.com/en/comparison/raspberrypi-models-comparison.

Figure 1-3.  Raspberry Pi Compute Module v3

1.3  �Introducing the Raspbian OS
Raspbian is an operating system-based Debian optimized for the

Raspberry Pi hardware. When the Raspberry Pi board is released, Raspbian

OS becomes the official OS for Raspberry Pi boards. Raspbian OS is an

open source operating system that was initiated by Mike Thompson

and Peter Green. The official Raspbian project can be found on this site:

https://www.raspbian.org/.

Chapter 1 Introduction to Raspberry Pi

http://socialcompare.com/en/comparison/raspberrypi-models-comparison
http://socialcompare.com/en/comparison/raspberrypi-models-comparison
https://www.raspbian.org

6

If you have experience using Debian and Ubuntu Linux, you should be

familiar with Raspbian OS since this OS is built based on Debian Linux and

optimized on a Raspberry Pi board with ARMv6 CPU.

This book uses Raspbian OS for testing and evaluation. You can

download the Raspbian image file at https://www.raspberrypi.org/

downloads. Currently, Raspbian provides desktop and lite versions. You

can see the download image in Figure 1-4. The Raspbian desktop version is

running Raspbian OS with an installed desktop runtime. The Raspbian lite

version is designed for light usage. It means you will obtain the Terminal

runtime.

Figure 1-4.  Download the Raspbian OS image

Next, I show you how to set up Raspbian OS on the Raspberry Pi 3 board.

Chapter 1 Introduction to Raspberry Pi

https://www.raspberrypi.org/downloads
https://www.raspberrypi.org/downloads

7

1.4  �Setting Up Raspbian OS on Raspberry
Pi Boards

The Raspberry Pi models don’t have internal storage unless you’re using

the Raspberry Pi Compute Module. You should attach external storage,

such as an SD card or a microSD card. The new Raspberry Pi board model

uses microSD for external storage.

I recommended that you use a microSD card that’s 16GB. You can

install some libraries, frameworks, and tools for your personal and

business needs. In this section, I’m going to show you how to set up

Raspbian OS on a Raspberry Pi 3 board.

First, download the Raspbian OS image. You can download it at

https://www.raspberrypi.org/downloads. For demo purposes, I chose

the Raspbian Stretch with desktop, as shown in Figure 1-4. To flash the

Raspbian image into the microSD card, you can use Etcher. It’s free and

available for Windows, Mac, and Linux. You can see the Etcher application

in Figure 1-5. Download it from https://etcher.io, based on your

platform, and then install it.

Figure 1-5.  Etcher application

Chapter 1 Introduction to Raspberry Pi

https://www.raspberrypi.org/downloads
https://etcher.io

8

The Etcher application is easy to use. You can just select your Raspbian

image and target the drive of the microSD card on your computer. Some

computers don’t have microSD card readers, so you need an SDcard

reader. Then put your microSD card into the reader.

After completing the flashing Raspbian step, you can plug your

keyboard, mouse, and monitor into the Raspberry Pi board.

Details about Raspbian installation on the Raspberry Pi board can be

found in the official guideline manual at https://www.raspberrypi.org/

documentation/installation/installing-images/README.md.

1.5  �Headless Raspbian SSH Network Setup
Sometimes you won’t want to use a keyboard or monitor to manage

the Raspbian network. We can perform a headless Raspbian network

in this case. In this scenario, the Raspberry Pi board will be connected

to a network via Ethernet. You’ll want to enable an SSH service on the

Raspberry Pi without configuring your keyboard and monitor.

First, load your Raspbian microSD card into your computer. You

should see a Raspbian drive. Now you want to enable SSH on Raspbian.

You can create a file, called ssh without a file extension, with blank

content. Put this file into the Raspbian drive. You can see it in Figure 1-6.

After you’re done, you should plug the Raspbian microSD card into the

Raspberry Pi board. Plug your LAN cable into the Raspberry Pi Ethernet

connector. After that, turn on your Raspberry Pi board.

Chapter 1 Introduction to Raspberry Pi

https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

9

Wait several minutes to ensure Raspbian has started. You should get

your Raspbian IP address from your router. Now open the SSH

client application. For Windows, you can use the PuTTY application at

https://www.putty.org. For Linux and Mac, you can use the Terminal.

For instance, the Raspbian IP address is 192.168.1.21 and the username is

pi. Then type this command.

$ ssh pi@192.168.1.21

Figure 1-6.  Adding an ssh file into Raspbian disk

Chapter 1 Introduction to Raspberry Pi

https://www.putty.org

10

You should be able to access the Raspbian Terminal remotely. You can

see an example of remote SSH in Figure 1-7.

1.6  �Expanding Storage
Before you install any libraries, frameworks, or tools, I recommend that

you expand the Raspbian disk. You can open Raspbian Terminal from the

desktop or by using remote SSH. Type this command.

$ sudo raspi-config

Figure 1-7.  Connecting to Raspbian via SSH

Chapter 1 Introduction to Raspberry Pi

11

You should see the form shown in Figure 1-8.

From the main menu (see Figure 1-8), you can select the Advanced

Options menu. Then, you should see the form that is shown in Figure 1-9.

Select the Expand Filesystem option. After that, you will obtain

confirmation. If you’re done, Raspbian will expand your disk.

Figure 1-8.  Select Advanced Options

Chapter 1 Introduction to Raspberry Pi

12

1.7  �Configuring a WiFi Network
Raspberry Pi 3 has a built-in WiFi network. You can connect this WiFI to

existing WiFi networks. If you are working on the Raspbian Desktop, you

can see the WiFi icon on the top right. Figure 1-10 shows an arrow pointing

to the connect WiFi option.

Figure 1-9.  Expand the filesystem

Chapter 1 Introduction to Raspberry Pi

13

After you select one of the WiFi SSIDs, you probably will be asked for

the SSID pin. Fill in the SSID pin and then your Raspbian will connect to

the network.

1.8  �Exploring the Raspbian OS Desktop
and Terminal

The Raspbian OS desktop has a look and feel like other operating systems.

Some applications have been installed for you, such as the Chrome

browser, Wolfram, Mathematica. A form of the Raspbian OS can be seen in

Figure 1-11.

Figure 1-10.  Connect to existing WiFi

Chapter 1 Introduction to Raspberry Pi

14

Figure 1-11.  Raspbian Scratch OS desktop on Raspberry Pi 3

Chapter 1 Introduction to Raspberry Pi

15

For instance, open a browser from the Internet menu. You can surf the

Internet as you do in a normal browser. Raspbian installed Chromium as

its default browser application. You can see this browser in Figure 1-13.

If you click on the Raspberry Pi logo on the top-left, you should see a

main menu, as shown in Figure 1-12. You can see a list of applications and

the managing systems.

Figure 1-12.  Main menu on Raspbian desktop OS

Chapter 1 Introduction to Raspberry Pi

16

1.9  �Configuring the VNC Server
You will probably access Raspbian desktop remotely, so you don’t need

to use the keyboard and monitor to access the Raspbian desktop. In

this section, we install the VNC server. An Internet network is required

to perform this task. Make sure your Raspberry Pi has connected to the

Internet via a LAN or a WiFi network.

To do this, you will perform these steps:

	 1.	 Install the VNC server.

	 2.	 Enable the VNC server.

	 3.	 Configure the boot option for desktop.

	 4.	 Test with the VNC viewer.

Each task is presented in detail in the following sections.

Figure 1-13.  Opening a browser for Internet access

Chapter 1 Introduction to Raspberry Pi

17

1.9.1  �Installing the VNC Server
To install the VNC server on Raspberry Pi 3, you can perform this task

on the Terminal. First, open the Terminal via SSH. After that, type these

commands.

$ sudo apt-get update

$ sudo apt-get install realvnc-vnc-server realvnc-vnc-viewer

This task will download and install the VNC server and viewer

application on to your Raspbian.

1.9.2  �Enabling the VNC Server
The next step is to enable the VNC server on the Raspbian. You can do this

step via the Terminal. You can type this command.

$ sudo raspi-config

Chapter 1 Introduction to Raspberry Pi

18

Figure 1-14.  Selecting VNC

After the command is executed, you should see the form shown

previously in Figure 1-8. Select Interfacing Options. You should then see

the menu shown in Figure 1-14. From there, select VNC.

Chapter 1 Introduction to Raspberry Pi

19

Next, you need to enable the boot options for the desktop.

1.9.3  �Configuring Boot Options for the Desktop
Since VNC remote needs desktop service, we should configure

Raspbian to enable it running in desktop mode. You can configure this via

raspi-config. You can call it via the Terminal.

$ sudo raspi-config

After it’s executed, you should get the form shown in Figure 1-16.

Select Boot Options so you will have a form, as shown in Figure 1-17.

Next, you are asked to confirm that you want to enable the VNC server,

as shown in Figure 1-15. Select Yes.

Figure 1-15.  Confirmation for enabling the VNC server

Chapter 1 Introduction to Raspberry Pi

20

Figure 1-16.  Selecting Boot Options

Figure 1-17.  Selecting Desktop/CLI

Chapter 1 Introduction to Raspberry Pi

21

Now you can select Desktop Autologin, as shown in Figure 1-18.

Figure 1-18.  Selecting Desktop Autologin Desktop GUI

When you’re done, your Raspbian will reboot.

1.9.4  �Testing the Server
To test the VNC server, you need to install a VNC client. We can use the

VNC Viewer application to do this. You can download this application

based on your platform from https://www.realvnc.com/en/connect/

download/viewer/.

Chapter 1 Introduction to Raspberry Pi

https://www.realvnc.com/en/connect/download/viewer/
https://www.realvnc.com/en/connect/download/viewer/

22

Figure 1-19.  VNC Viewer application on the Mac platform

You can see VNC Viewer application in Figure 1-19. This application is

easier to use.

Chapter 1 Introduction to Raspberry Pi

23

Figure 1-20.  Connecting to the Raspbian desktop via the VNC Viewer

Now you can type the IP address of Raspbian into the textbox of the

VNC Viewer application. If you’re connected, you will be asked to provide

the username and password, as shown in Figure 1-20.

If this succeeds, you should see the Raspbian desktop. For instance,

you can see my Raspbian desktop in Figure 1-21.

Chapter 1 Introduction to Raspberry Pi

24

1.10  �Powering Off the Raspbian
It’s a good idea to turn off your Raspberry Pi when you’re not using it. Don’t

turn off the power directly because doing so can break your board. Instead,

you turn off your Raspberry Pi by typing this command on the Terminal.

$ sudo shutdown -h -P now

After Raspbian shuts down, you’ll see the red LED light up. Then

unplug the power cable from the board.

If you are working with Raspbian in desktop mode, you can turn off

Raspberry Pi by choosing the Shutdown option from the main menu. After

you choose this option, you should obtain the dialog shown in Figure 1-22.

Click the Shutdown button.

Figure 1-21.  Accessing a Raspbian desktop through the VNC Viewer
application

Chapter 1 Introduction to Raspberry Pi

25

After the shutdown process is complete, you can unplug the power

cable from your Raspberry Pi board.

This is the end of the last session in this chapter.

1.11  �Summary
In this chapter, you learned briefly what Raspberry Pi and Raspbian are.

You also set up Raspbian on a Raspberry Pi board. Last, you learned how to

configure the network and the VNC desktop.

In the next chapter, we focus on the command line in Raspbian. You

learn how to operate and manage Raspbian through the Terminal.

Figure 1-22.  The Shutdown button on the Raspbian desktop

Chapter 1 Introduction to Raspberry Pi

27© Agus Kurniawan 2019
A. Kurniawan, Raspbian OS Programming with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4212-4_2

CHAPTER 2

The Raspbian OS
Command Line
The Raspbian OS provides shells to be used to manage its system. Some

shell commands are useful for optimizing your work. In this chapter, you

learn how to work with Raspbian shells. You’ll see some examples to help

you learn and understand the use of the shell.

The following is a list of topics covered in this chapter:

•	 Understand Raspbian shells

•	 Work with Raspbian shells

•	 Manipulate files and directories

•	 Work with redirection

•	 Work with resource permissions

•	 Manipulate processes

•	 Work with media storage

28

2.1  �Introducing Raspbian Shells
Raspbian is built from Debian OS. This means that you can operate

Raspbian using the Debian/Ubuntu style. In this chapter, you learn about

the Raspbian shells, which we usually call the command line.

You can access the Raspbian shell from desktop mode or via remote

SSH. If you are working in desktop mode, you can access the Raspbian

Terminal by clicking on the Terminal icon. You’ll then see the Terminal

window, as shown in Figure 2-1.

Figure 2-1.  Accessing the Raspbian Terminal from the desktop

Chapter 2 The Raspbian OS Command Line

29

You also can access the Raspbian Terminal via SSH. For instance, the

IP address of Raspbian is 192.168.1.21. You can access remote SSH with the

pi account, as follows.

$ ssh pi@192.168.1.21

If this succeeds, you’ll see the Terminal, as shown in Figure 2-2.

Figure 2-2.  Accessing the Raspbian Terminal using remote SSH

Chapter 2 The Raspbian OS Command Line

30

2.2  �The Basic Raspbian Shell
In this section, we perform basic shell operations in Raspbian. These shell

commands are general commands that you can use in your daily activities.

We explore some basic shells in the following sections.

2.2.1  �Rebooting Raspbian OS
Sometimes you’ll want to refresh or reload libraries after you’ve installed

or configured something. You’ll probably need to reboot your Raspbian.

If you want to reboot your Raspberry Pi, use this command:

$ sudo shutdown -r now

You also can do it by using this command:

$ sudo reboot

2.2.2  �Shutting Down
If you think you won’t be using the Raspberry Pi board again, you can turn

it off. You should perform a shutdown before unplugging it from the power

adapter.

Use this command to perform a shutdown and turn off your

Raspberry Pi:

$ sudo shutdown -h now

Wait several minutes. After that, you can unplug the power cable from

the Raspberry Pi board.

Chapter 2 The Raspbian OS Command Line

31

2.2.3  �Configuring the Timezone
If you want to change the timezone in the Raspberry Pi, you can use the

raspi-config tool. You can type this command on the Terminal.

$ sudo raspi-config

Then, you will get the dialog box shown in Figure 2-3.

Figure 2-3.  Displaying the raspi-config form

Chapter 2 The Raspbian OS Command Line

32

You can select Localisation Options to configure the timezone. When

you’re done, you should get the form shown in Figure 2-4.

Then, you select your area to set the timezone. You can see the options

in Figure 2-5.

Figure 2-4.  Selecting the timezone

Chapter 2 The Raspbian OS Command Line

33

When you’re done, your Raspberry Pi will set the timezone that you

have selected.

2.2.4  �Configuring the Keyboard
You can change the keyboard layout using raspi-config. You can follow

the instructions from previous section to access the raspi-config tool.

Select Change Keyboard Layout, which is also shown in Figure 2-4.

Raspbian will detect your keyboard layout automatically.

Figure 2-5.  Selecting the appropriate timezone area

Chapter 2 The Raspbian OS Command Line

34

2.3  �Manipulating Files and Directories
This chapter explains how to manipulate files and directories using the

Raspberry Pi shell. We explore these topics in the next sections.

2.3.1  �Getting the Current Working Directory
When you are working with the shell, you want to know what the current

working directory is. You can use the pwd command to determine this.

$ pwd

Then you will obtain the following output.

$ pwd

/home/pi

2.3.2  �Listing Files and Directories
To list files and directories on the current directory, you can use the ls

command.

$ ls

Chapter 2 The Raspbian OS Command Line

35

Figure 2-6.  Listing files and directories

The sample output is shown in Figure 2-6.

Chapter 2 The Raspbian OS Command Line

36

You can change a form in a listing. You can add -l parameter to ls to

do this, as follows:

$ ls -l

The command output is shown in Figure 2-7.

You can list the contents of a directory using ls as well. For instance,

say you want to list the contents of the Documents directory. You would use

this command:

$ ls Documents/

Figure 2-7.  Listing files and directories with the -l parameter

Chapter 2 The Raspbian OS Command Line

37

2.3.3  �Understanding the ls Parameters
If you want to see the list of parameters used with the ls command, you

can call ls with the --help parameter. You can type this command:

$ ls --help

Then you’ll see information about the parameter, as shown in Figure 2-8.

Figure 2-8.  Displaying the parameters of the ls command

Chapter 2 The Raspbian OS Command Line

38

For example, you can use the parameter -l to list the format and -r to

reverse the order of the files and directories.

$ ls -l -r

Sample output can be seen in Figure 2-9.

2.3.4  �Changing the Current Working Directory
If you want to change the current directory to another directory, you can

use the cd command with a parameter that target the directory you want.

For instance, say you want to change to the Documents folder. Then you can

type this command.

$ cd Documents/

Figure 2-9.  Displaying a list of files and directories with the -l and -r
parameters

Chapter 2 The Raspbian OS Command Line

39

Sample program output can be seen in Figure 2-10.

If you don’t have any idea as to which directory you want to navigate

to, you can use the Tab key. For instance, say you want to see a list of

directories on the root directory, /. Type this command:

$ cd /

Figure 2-10.  Changing the current directory

Chapter 2 The Raspbian OS Command Line

40

After that, press the Tab key and then you can see the list of directories.

You can see sample output in Figure 2-11.

Now type this command.

$ cd /usr/

Figure 2-11.  Listing directories using the cd command

Chapter 2 The Raspbian OS Command Line

41

Press the Tab key again. You’ll see a list of directories under the /usr/

folder. Figure 2-12 shows this command output.

Sometimes you’ll want to go back to the previous directory. You can

do this using the cd command with the parameter .. (two dots). Type this

command:

$ cd ..

Figure 2-12.  Listing directories with the cd command on a
subfolder

Chapter 2 The Raspbian OS Command Line

42

You’ll see the response shown in Figure 2-13.

2.3.5  �Creating a Directory
We can use the mkdir command to create a new directory. For instance,

say you want to create a folder called myschool.

$ mkdir myschool

Figure 2-13.  Moving back to the previous directory

Chapter 2 The Raspbian OS Command Line

43

You can verify that it was created using the ls command. You can then

see your newly created directory, as shown in Figure 2-14.

You also can create multiple directories simultaneously. For instance,

you can create these folders—folder1, folder2, and folder3—using the

following command:

$ mkdir folder1 folder2 folder3

Figure 2-14.  Creating a directory

Chapter 2 The Raspbian OS Command Line

44

Sample program output can be seen in Figure 2-15.

2.3.6  �Removing Files and Directories
To remove a file or directory, you can use the rm command. You can check

the rm parameters by typing this command.

$ rm --help

To delete a file, you specify the filename as the parameter. For instance,

say you want to delete the test.txt file. You would type this command to

do so.

$ rm test.txt

Figure 2-15.  Creating multiple folders at once

Chapter 2 The Raspbian OS Command Line

45

You can verify that it was deleted using the ls command. You can see

the results in Figure 2-16.

If you want to delete a directory, you can use the -rf parameter to

force-delete all the content inside the directory.

$ rm -rf myschool

Figure 2-16.  Deleting a file

Chapter 2 The Raspbian OS Command Line

46

Then you can check it using the ls command, as shown in Figure 2-17.

2.3.7  �Copying Files and Directories
You can copy files and directories using the cp command. You can learn

about the cp parameters by typing this command.

$ cp --help

Figure 2-17.  Deleting files and directories with enforcement

Chapter 2 The Raspbian OS Command Line

47

Then you’ll obtain the output shown in Figure 2-18.

For demo purposes, say you want to copy the test.txt file to the

current directory and name it a new name, called test2.txt. If a different

text2.txt file exists in that directory, it will be overridden.

$ cp test.txt test2.txt

Figure 2-18.  Displaying the cp parameters

Chapter 2 The Raspbian OS Command Line

48

The command output can be seen in Figure 2-19.

If you want a confirmation before copying files, use the -i parameter.

If the text2.txt file does already exist, you will first be asked if you want to

override this file.

$ cp -i test.txt test2.txt

Figure 2-19.  Copying a file

Chapter 2 The Raspbian OS Command Line

49

The command response is shown in Figure 2-20.

You can also copy a file into a directory with the same filename. For

instance, you can copy the test.txt file to the Documents directory.

$ cp test.txt Documents/

You also can copy all the files in a directory, including any

subdirectories and hidden files/directories, into another directory. For

instance, say you want to copy all the files in the Documents directory into

the folder1 directory. You would type this command to do this:

$ cp -a Documents/ folder1/

Figure 2-20.  Copying a file with a confirmation

Chapter 2 The Raspbian OS Command Line

50

The sample output is shown in Figure 2-21.

2.3.8  �Moving Files and Directories
We can move a file or directory to another folder using the mv command.

You can also check parameters and usage of the mv command by typing

this command.

$ mv --help

You should see a list of mv parameters. Let’s start to work with the mv

command.

You can move a file with a new filename, but keep it in the current

directory. It basically renaming the file. For instance, say you want to move

the test.txt file into current directory with the name mytest.txt. You

would use this command:

$ mv test.txt mytest.txt

Figure 2-21.  Copying all files and directories into a targeted folder

Chapter 2 The Raspbian OS Command Line

51

You can see the program output in Figure 2-22.

After executing this command, the test.txt file will be removed and a

new file, mytest.txt, will be created. If the mytest file exists in the current

directory, it will be overridden. You can request a confirmation before mv

overrides the file by using the -i parameter.

$ mv -i test.txt mytest.txt

Now you also can move a file into another folder. For instance, you can

move the mytest.txt file into the folder called Documents.

$ mv mytest.txt Documents/

You can move a folder to another folder, for instance, say you want to

move the folder1 folder to folder2. Use this command:

$ mv folder1/ folder2/

Figure 2-22.  Moving a file

Chapter 2 The Raspbian OS Command Line

52

2.3.9  �Creating Symbolic Links
You can create a symbolic link using the ln command. You can see how to

use this command and view its parameters by typing this command:

$ ln --help

You’ll then see all the ln parameters.

For example, say you want to create a symbolic link called mylink and

refer to a file called test2.txt. Use this command sequence:

$ ln test2.txt mylink

You can see this command program, as shown in Figure 2-23.

Figure 2-23.  Creating a symbolic link

If you open File Manager on the Raspbian desktop, you can see the link

file, called mylink. Then open this file. You can see the text editor with the

test2.txt file.

Chapter 2 The Raspbian OS Command Line

53

You also can create a symbolic link for a folder; for instance, you can

create a symbolic link called myfolder to the folder folder2/.

$ ln -s folder2/ myfolder

2.4  �Redirection
In this section, we are going to explore how to use redirection on the

Raspberry Pi.

2.4.1  �Standard Output
Most command-line programs that display their results do so by sending

their results to standard output. By default, standard output directs its

contents to the display. You can redirect standard output to a file using the

> command. For instance, you can call the ls command and then save the

result into a file.

$ ls > list.txt

You can see the list.txt file, which you can open using nano.

$ nano list.txt

Chapter 2 The Raspbian OS Command Line

54

A contents of the list.txt file can be seen in Figure 2-24.

Figure 2-24.  Redirecting a file

The > command replaces the existing file. You can append the content

using the >> command.

$ ls Documents/ >> list.txt

2.4.2  �Standard Input
By default, standard input gets its contents from the keyboard, but like

standard output, it can be redirected. To redirect the standard input to a

file instead of to the keyboard, you use the < character. For instance, you

can sort data in the list.txt file.

$ sort < list.txt

Chapter 2 The Raspbian OS Command Line

55

Figure 2-25.  Output from executing a sort

The command output is shown in Figure 2-25.

You can also redirect the result into a new file, called sorted_list.txt.

$ sort < list.txt > sorted_list.txt

2.4.3  �Standard Error
You can redirect error to a file using the 2> command. It can be a program

or a Linux command. You can type this command.

$ program 2> error.log

$ linux_command 2> error.log

You can redirect standard output and error into a file using the

following command.

$ linux_command &> file

Chapter 2 The Raspbian OS Command Line

56

2.4.4  �Pipelines
You can use I/O redirection to connect multiple commands together with

what are called pipelines. The following is an example of a pipeline in

action:

$ ls -l | less

The program output can be seen in Figure 2-26.

Figure 2-26.  Performing a pipeline

To exit and go back, press the q key on the keyboard.

As another example, you can display the 10 newest files in the current

directory:

$ ls -lt | head

Chapter 2 The Raspbian OS Command Line

57

The following is a list of filter parameters you can use on your

commands.

•	 sort

•	 uniq

•	 grep

•	 fmt

•	 pr

•	 head

•	 tail

•	 tr

•	 sed

•	 awk

2.5  �Permissions
This section explains how to work with permissions in Raspbian.

2.5.1  �Understanding Permissions
First, you can determine our identity information using the id command.

$ id

Chapter 2 The Raspbian OS Command Line

58

For instance, you obtain the response shown in Figure 2-27.

Figure 2-27.  Output from the id command

Now you can evaluate permissions on each file or directory. You can

pass the -l parameter on ls to display permissions.

$ ls -l

Chapter 2 The Raspbian OS Command Line

59

The program output is shown in Figure 2-28.

Figure 2-28.  Listing permission on an ls command

Note these two commands from Figure 2-28:

drwxr-xr-x 2 pi pi 4096 Jun 27 02:22 Documents

-rw-r--r-- 2 pi pi 7 Sep 19 17:54 test2.txt

Chapter 2 The Raspbian OS Command Line

60

Let’s explore the drwxr-xr-x command in more detail. See Figure 2-29.

The following is a list of file types:

d ----> directory

- -------> regular file

l ----> symbolic link

c ---> character special file

b ---> block special file

The following is a list of permission attributes:

r ---> read permission

w ---> write permission

x ---> execute permission

- ---> no permission

Figure 2-29.  Permission information

Chapter 2 The Raspbian OS Command Line

61

Now we go back to the permission drwxr-xr-x. You know that it’s a

folder. The owner has read, write, and execute permissions. The group

has read and execute permissions. The rest have read and execute

permissions.

2.5.2  �chmod
The chmod command is used to change permissions on a file or directory.

We can use chmod with the octal representation or symbolic representation.

The octal representation for permissions is constructed as follows:

•	 The first number is for the user

•	 The second number is for the group

•	 The third number is for all others

For instance, if you wanted to give read and write permissions (6) to

the user and read permissions (4) to the group and others, you would use

the following command:

$ chmod 644 filename

Note:

•	 The 6 octal number converts to the binary number:

110. This means 110 is rw-

•	 The 4 octal number converts to the binary number:

100. This means 100 is r--

As another example, say you want to give read and execute

permissions (5) to the user, read permissions (4) to the group, and nothing

(0) to the others. You would use the following command:

$ chmod 540 filename

Chapter 2 The Raspbian OS Command Line

62

Note:

•	 The 5 octal number converts to the binary number:

111. This means 110 is rwx

•	 The 4 octal number converts to the binary number: 100.

This means 100 is r--

•	 The 0 octal number converts to the binary number:

000. This means 000 is --- (no permissions)

The second way that you can change permissions is by applying

the symbolic representation. Following is a list of the symbolic

representations:

•	 u is for user

•	 g is for group

•	 o is for others

For instance, you can add execute permissions (using the + symbol) to

the user with this command.

$ chmod u+x filename

If you also can add multiple permissions for users and groups.

$ chmod u+r,g+x filename

To remove permissions, you use the - symbol. For instance, you can

remove read and execute permissions from a file by using this command.

$ chmod u-rx filename

Use the -R option to change the permission recursively. Here is an

example command.

$ chmod -R 755 my-directory/

Chapter 2 The Raspbian OS Command Line

63

2.5.3  �chown
The chown command is used to change the user and/or group ownership

of a given file. The following syntax is for chown.

$ chown owner-user file

$ chown owner-user:owner-group file

$ chown owner-user:owner-group directory

$ chown options owner-user:owner-group file

For instance, say you want to obtain permissions for the test.log file.

$ ls -l test.log

The following is the result.

$ -rw-r--r-- 1 pi pi 837 Feb 4 06:19 test.log

You can see the file owner is now pi.

Now you change ownership of the test.log file.

$ chown agusk test.log

Try to display the permissions again on the test.log file, use this

command:

$ -rw-r--r-- 1 agusk pi 837 Feb 4 06:19 test.log

You also can change the ownership and group related to a file.

$ chown agusk:agusk test.log

You can see the permissions of the test.log file as follows.

$ -rw-r--r-- 1 agusk agusk 837 Feb 4 06:19 test.log

Chapter 2 The Raspbian OS Command Line

64

2.6  �Manipulating Processes
In this section, we explore how to work with processes in Raspbian. To

view processes, you can use the following commands:

•	 ps

•	 top

Each command will be explained in the following sections.

2.6.1  �ps
The ps command can be used to view the current processes, including

their process identification numbers (PIDs). Simply type ps on the

Terminal.

$ ps

You’ll see the current process, as shown in Figure 2-30.

Figure 2-30.  A list of current processes in Raspbian

Chapter 2 The Raspbian OS Command Line

65

If you want to know details about the current process, you can pass the

x parameter with the ps command.

$ ps x

The command output is shown in Figure 2-31.

Figure 2-31.  A list of current processes using ps with the x
parameter

Note the symbols in the STAT column in Figure 2-31. This information

can be found in the document. The following is a list of process states:

•	 D: Uninterruptible sleep (usually IO)

•	 R: Running or runnable (on run queue)

•	 S: Interruptible sleep (waiting for an event to complete)

Chapter 2 The Raspbian OS Command Line

66

•	 T: Stopped, either by a job control signal or because it is

being traced

•	 W: Paging (not valid since the 2.6.xx kernel)

•	 X: Dead (should never be seen)

•	 Z: Defunct (“zombie”) process, terminated but not

reaped by its parent

If you want to know more information about the current process, you

can use the following command.

$ ps -aux | less

Note:

•	 Parameter -a displays all processes.

•	 Parameter -u tells the ps command to provide detailed

information about each process.

•	 Parameter -x adds to the list processes that have no

controlling terminal, for instance daemons.

Chapter 2 The Raspbian OS Command Line

67

The sample output is shown in Figure 2-32. Press q to exit the ps

application.

Figure 2-32.  Listing processes with the -aux parameter

As another option, you can use the following command.

$ ps -ef | less

You can view processes in tree form. You can also use the pstree

command.

$ pstree | less

Chapter 2 The Raspbian OS Command Line

68

You can see this command output in Figure 2-33. Press q to exit the ps

application.

Figure 2-33.  Listing processes in tree form

2.6.2  �top
The top command displays the processes in order of CPU usage. You can

type this command.

$ top

Chapter 2 The Raspbian OS Command Line

69

After it’s executed, you’ll see a list of processes to CPU usage, as shown

in Figure 2-34.

Figure 2-34.  Displaying processes to CPU usage

Press M to display the processes sorted by memory usage. If you want to

exit, press q.

We can specify the data by user as well. For instance, you use this

command if you want to display processes by the user called pi.

$ top -u pi

Chapter 2 The Raspbian OS Command Line

70

You can see this command output in Figure 2-35.

Figure 2-35.  Displaying processes by username

2.6.3  �Killing Processes
Sometimes you’ll want to stop processes by killing them. To stop a process,

you can use the kill command. You must know the process ID (PID),

which you can determine via the ps command. For instance, say you want

to stop a process with PID 2093. You would type the following command.

$ kill 2093

If you have a security problem, you can add the sudo command.

$ sudo kill 2093

Chapter 2 The Raspbian OS Command Line

71

To verify whether the process has stopped, you can use the ps

command with the -ef parameter.

$ ps -ef

We can also stop all processes related to a particular name using the

killall command. Here is the basic syntax:

$ killall [options] program_name

For instance, say you want to stop all processes related to Java. In that

case, you would use this command:

$ killall java

2.6.4  �Viewing Memory
We can view unused and used memory and swap space using the free

command. Just type this command:

$ free

The sample output is shown in Figure 2-36.

Figure 2-36.  Displaying a list of free memory

Chapter 2 The Raspbian OS Command Line

72

2.7  �Media Storage
In this section, I’m going to explain how to work with media storage.

2.7.1  �Displaying Free Disk Space
To show the statistics about the amount of free disk space you have on the

specified file system, you use the df command as follows:

$ df -h

A sample of the output can be seen in Figure 2-37.

Figure 2-37.  Displaying free disk space

You can display the total hard disk space, including any removable

disks. You must type the following command as the root user:

$ sudo fdisk -l | grep Disk

Chapter 2 The Raspbian OS Command Line

73

Figure 2-38.  Displaying all total hard disk space

You can see my sample output in Figure 2-38.

2.7.2  �mount
The mount command mounts a storage device or filesystem, making it

accessible and attaching it to an existing directory structure. To view all

mounted external devices, use the mount command.

$ mount

Chapter 2 The Raspbian OS Command Line

74

The command output can be seen in Figure 2-39.

If you have a flashdisk, you can plug it into your Raspberry Pi via a

USB. Normally this device will appear as /dev/sda1.

$ ls /dev/sda*

Figure 2-39.  Performing the mount command

Chapter 2 The Raspbian OS Command Line

75

Figure 2-40.  Listing all external flashdisks

This command output is shown in Figure 2-40.

Now how do you mount this device? First, you create a directory on /

media/, for instance myfd. Type this command to do so:

$ sudo mkdir /media/myfd

Then you can mount your flashdisk using the following command:

$ sudo mount -o uid=pi,gid=pi /dev/sda1 /media/myfd

You may obtain the warning, "mount: warning: /media/myfd seems

to be mounted read-only.". I used a flashdisk with the NTFS format. To

solve this warning, install the ntfs-3g package.

$ sudo apt-get install ntfs-3g

If your flashdisk has the exfat format, you can install the following

libraries.

$ sudo apt-get install exfat-fuse exfat-utils

Now try to mount the flashdisk using this command:

$ sudo mount -o uid=pi,gid=pi /dev/sda1 /media/myfd

Chapter 2 The Raspbian OS Command Line

76

You can see there is no warning. You can see my command output in

Figure 2-41.

You can then check the result by listing the contents of the flashdisk

using the ls command.

$ ls /media/myfd

Figure 2-41.  Mounting a flashdisk

Chapter 2 The Raspbian OS Command Line

77

You can see the output in Figure 2-42.

2.7.3  �umount
The umount command “unmounts” a mounted filesystem. It tells the

system to complete any pending read or write operations and then safely

detaches the filesystem.

For instance, say you want to remove the flashdisk on /media/myfd.

You type this command.

$ sudo umount /media/myfd

2.8  �Summary
You learned how to work with the Raspbian shell, from basic uses, to using

processes, working with storage, and manipulating permissions.

In the next chapter, we focus on the Raspbian program. You learn how

to build programs using the Raspbian OS.

Figure 2-42.  Listing all contents from the flashdisk

Chapter 2 The Raspbian OS Command Line

79© Agus Kurniawan 2019
A. Kurniawan, Raspbian OS Programming with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4212-4_3

CHAPTER 3

Programming
on Raspbian OS
Raspbian OS provides application tools to write programs. In this chapter,

you learn to write programs on Raspbian. Then, you’ll learn how to execute

the program.

The following is a list of topics that you learn about in this chapter:

•	 Understand the programming model in Raspbian

•	 Set up the programming environment

•	 Write Python programs

•	 Write Node.js programs

•	 Write C/C++ programs

3.1  �Understand the Programming Model
in Raspbian OS

Raspberry Pi with Raspbian OS is a complete development environment

for programming. You can develop programs in Raspbian in three ways:

•	 Desktop mode

•	 Terminal mode on desktop mode

•	 Terminal mode over remote SSH

80

Desktop mode is easier to start to build programs on Raspbian. You

just need a monitor, a keyboard, and a mouse to write programs. Some

programming tools are provided by Raspbian. You can see these tools in

Figure 3-1.

Figure 3-1.  Programming tools on the Raspbian desktop

The Raspbian desktop also provides office tools to write document and

manage spreadsheets. You can see them in Figure 3-2.

Chapter 3 Programming on Raspbian OS

81

You can also write programs on the Raspbian Terminal. You can run,

write, and execute them. You can see my checking Python version in

Figure 3-3.

Figure 3-2.  Office tools on the Raspbian desktop

Chapter 3 Programming on Raspbian OS

82

Last, you can write programs on the Raspbian Terminal over remote

SSH. You can see my remote SSH Python access in Figure 3-4.

Figure 3-3.  Writing programs using the Terminal from the desktop
mode

Chapter 3 Programming on Raspbian OS

83

3.2  �Setting Up the Programming
Environment

In general, we don’t have to put more effort into the Raspberry Pi board

and Raspbian OS to set up programming. By default, Python 2.7.x and 3.5.x

have Raspbian Scratch desktop edition installed.

We explore Raspbian programming on Python, Node.js, and C/C++ in

the next sections.

3.3  �Python Programming
Most people use Python to write programs on a Raspberry Pi board. There

are many libraries and frameworks for Python. You can read and review

the Python project officially at https://www.python.org.

In this section, we review some ways to write programs on Raspbian.

Figure 3-4.  Accessing Python from a remote SSH

Chapter 3 Programming on Raspbian OS

https://www.python.org

84

3.3.1  �Python 3 (IDLE)
If you prefer to work in desktop mode, Raspbian provides Python 3

(IDLE) to develop a Python program in Raspbian. You can find it on the

Programming menu. From there, you should get the Python shell, as

shown in Figure 3-5.

Figure 3-5.  The Python 3.5.3 shell

For demo purposes, write the following scripts.

>>> a = 3

>>> b = 5

>>> c = a * b

>>> print(c)

A sample of the program output can be seen in Figure 3-6.

Chapter 3 Programming on Raspbian OS

85

3.3.2  �Thonny Python IDE
Thonny is a Python IDE used to develop Python programs. You can write

Python scripts and save those into Python files. Thonny also provides a

running tool so you can see the program output from an IDE. The Thonny

project can be found at https://thonny.org.

The Thonny IDE is installed in the Raspbian Scratch desktop by

default. You can find it on the Programming menu. From there, you can

see the form shown in Figure 3-7.

Now you can write Python program as follows.

a = 10

b = 3

c = a * b

print(c)

Figure 3-6.  Executing Python on a shell

Chapter 3 Programming on Raspbian OS

https://thonny.org

86

Save this program into a file called simple.py, by clicking the array-

disk icon with a down arrow. See Figure 3-8.

Figure 3-7.  Thonny Python IDE application

Chapter 3 Programming on Raspbian OS

87

Now you can run this file by clicking the green arrow, as shown in

Figure 3-9. When you are done, you should see the program output at the

bottom of the IDE.

Figure 3-8.  Writing programs on the Thonny application

Chapter 3 Programming on Raspbian OS

88

3.3.3  �Python Shell from Remote SSH
You can write a Python program via remote SSH. After you’re connected,

you can use the nano tool to write the program.

$ nano hello.py

You will get a form of nano, as shown in Figure 3-10.

Figure 3-9.  Executing a program on the Thonny application

Chapter 3 Programming on Raspbian OS

89

You can write these scripts:

a = 10

b = 3

c = a * b

print(c)

Save these scripts. Then, you can run this file.

$ python hello.py

Figure 3-10.  Writing Python scripts on the nano application

Chapter 3 Programming on Raspbian OS

90

You can see the program output in Figure 3-11.

Figure 3-11.  Executing a Python file on the Terminal

3.3.4  �What’s Next?
There are many resources to learn Python programming. You can find

resources from books and online websites. You can also learn more about

Python from the official documentation at https://docs.python.org/3/.

3.4  �Node.js Programming
Node.js is an open source server environment. Node.js runs on various

platforms, such as Windows, Linux, UNIX, and Mac OSX. Node.js adopts

JavaScript as its programming language. Officially, the Node.js project can

be found at https://nodejs.org/.

The Raspbian Scratch desktop version is installed. In this section, we

will install Node.js from the Node.js website. First, you need to check the

MCU edition. Type this command to do so.

$ uname -a

Chapter 3 Programming on Raspbian OS

https://docs.python.org/3/
https://nodejs.org/

91

You should see your MCU edition. For instance, the Raspberry Pi 3

board uses ARMv7, as shown in Figure 3-12.

Figure 3-12.  Checking the MCU edition

You can download Node.js for your MCU platform based on previous

checking at https://nodejs.org/en/download/.

In these examples, we use Node.js v8.12.0. You can download and

extract it by typing this command.

$ wget https://nodejs.org/dist/v8.12.0/node-v8.12.0-linux-

armv7l.tar.gz

$ tar -xzf node-v8.12.0-linux-armv7l.tar.gz

Program output can be seen in Figure 3-13. Then, you can configure it.

Type these commands to do so.

$ cd node-v8.12.0-linux-armv7l/

$ sudo cp -R * /usr/local/

Chapter 3 Programming on Raspbian OS

https://nodejs.org/en/download/

92

After that, you can check if the download was successful by typing

these commands.

$ node -v

$ npm -v

If these commands succeeded, you should see the Node.js and NPM

versions, as shown in Figure 3-14.

Figure 3-13.  Download and extract the Node.js application

Figure 3-14.  Checking the Node.js and NPM versions

Chapter 3 Programming on Raspbian OS

93

Now you’ll write a simple Node.js application. You can use the nano

application to do so.

$ node hello.js

Then, write the script shown in Figure 3-15.

console.log("hello node.js");

Figure 3-15.  Writing a Node.js program

When you’re done, run this program.

$ node hello.js

You should see messages on the Terminal. Figure 3-16 is a sample of

the typical program output.

Chapter 3 Programming on Raspbian OS

94

3.5  �C/C++ Programming
GCC is installed in Raspbian by default. This means you can write

programs for C/C++. You can verify this by typing this command:

$ gcc--version

You should see the GCC version, as shown in Figure 3-17.

Figure 3-16.  Running the Node.js application

Figure 3-17.  Checking the GCC version

Chapter 3 Programming on Raspbian OS

95

For demo purposes, let’s create a simple code example, called hello

world. Create this file:

$ nano hello.c

Then, you can write this program. You can see it in Figure 3-18.

#include<stdio.h>

int main()

{

 printf("Hello World\r\n");

 return 0;

}

Save this program.

Figure 3-18.  Writing a simple C program

Now you compile and run this program by typing these commands.

$ gcc hello.c -o hello

$./hello

Chapter 3 Programming on Raspbian OS

96

If the commands succeed, you should see program output shown in

Figure 3-19.

Figure 3-19.  Compiling and running the C program

3.6  �Summary
In this chapter, you learned how to develop programs in Python, Node.js,

and C/C++. It’s a good idea to practice more in these areas by developing

programs with various use cases.

The next chapter, you learn all about the Wolfram Language and

Mathematica on a Raspberry Pi board with Raspbian OS.

Chapter 3 Programming on Raspbian OS

97© Agus Kurniawan 2019
A. Kurniawan, Raspbian OS Programming with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4212-4_4

CHAPTER 4

Computational
Mathematics
with the Wolfram
Language
and Mathematica
The Wolfram Language and Mathematica are exclusive tools and libraries

of the Raspbian OS on the Raspberry Pi board. In this chapter, we explore

the Wolfram Language and Mathematica from a programming view.

The following is a list of topics covered in this chapter:

•	 Understand the Wolfram Language and Mathematica

•	 Set up Wolfram and Mathematica

•	 Develop a Hello World program

•	 Learn basic programming for Wolfram and

Mathematica

•	 Learn computational mathematics with Wolfram and

Mathematica

98

4.1  �Introducing Wolfram Language
and Mathematica

Wolfram Language and Mathematica are available for the Raspberry Pi

board and come bundled with the Raspbian operating system. Programs

can be run from a Pi command line or as a background process, as well as

through a notebook interface on the Pi or on a remote computer. On the Pi,

the Wolfram Language supports direct programmatic access to standard Pi

ports and devices. For further information about this project, you can visit

http://www.wolfram.com/raspberry-pi/.

After you have deployed Raspbian on Raspberry Pi, you can run

Raspbian in GUI mode and then you should see the Wolfram and

Mathematica icons. You can see these icons in Figure 4-1.

Figure 4-1.  The Wolfram and Mathematica icons on the Raspbian
bar

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

http://www.wolfram.com/raspberry-pi/

99

You also find these application icons in the main menu, as shown in

Figure 4-2.

Figure 4-2.  The Wolfram and Mathematica menu options on the
Raspbian main menu

The Wolfram application has a Terminal form to run programs. If you

execute the Wolfram application, you should see the Terminal application,

as shown in Figure 4-3.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

100

Otherwise, you can execute the Mathematica application. Then, you

get the form shown in Figure 4-4.

Figure 4-3.  Running the Wolfram application from the Terminal

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

101

Next, we learn how these tools work with computation mathematics.

4.2  �Setting Up Wolfram and Mathematica
Technically, we don’t discuss setting up Wolfram and Mathematica

in any more detail. If you download and deploy the latest Raspbian

on the Raspberry Pi boards, you will get free licenses for Wolfram and

Mathematica.

In the next section, we create a simple program on Wolfram and

Mathematica.

Figure 4-4.  Running the Mathematica application

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

102

4.3  �Developing a Hello World Program
To get experience creating programs using Wolfram and Mathematica, we

will build a simple program, using a simple mathematics operation. For

demo purposes, you can click the Wolfram Mathematica icon. Then, you

get the Wolfram Mathematica Editor, shown in Figure 4-5.

Now type these scripts:

a = 3

b = 5

c = a * b

Figure 4-5.  Running programs on Mathematica

To run these scripts, press Shift+Enter (press the Shift and Enter keys

together) and you’ll obtain the resulting output. Sample output can be

seen in Figure 4-5.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

103

You also can run the same scripts in the Wolfram Terminal. You can

type the script line-by-line. Then, you will get response directly. Sample

program output from the Wolfram Terminal can be seen in Figure 4-6.

Figure 4-6.  Running programs from the Wolfram Terminal

4.4  �Basic Programming
In this section, you learn how to write programs for Wolfram and the

Mathematica language. You learn the essential programming language

steps from Wolfram and Mathematica.

You can follow the guidelines in the next sections.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

104

4.4.1  �Data Types and Declaring Variables
You can declare a variable and assign a value using the = syntax. If you

don’t want to assign a value to a variable, you can set . as the value. You

also can use := to delay assignment.

On a notebook from the Mathematica Editor, you can type these

scripts:

a =.

b = 3

c := 5

str = "hello world"

Run these scripts by pressing the Shift+Enter keys. You can see the

program output in Figure 4-7.

Figure 4-7.  Declaring variables

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

105

4.4.2  �Arithmetic Operators
Mathematica has arithmetic operators that you can use to manipulate

numbers. The following is a list of its arithmetic operators:

•	 + addition

•	 - subtraction

•	 * multiplication

•	 / division

•	 ^ exponentiation

For demo purposes, write these scripts.

m = 8

n = 5

p = m + n

p = m - n

p = m * n

p = m / n

p = m^2

The sample program output is shown in Figure 4-8.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

106

4.4.3  �Relational and Logical Operators
We can perform logical operations in Mathematica as well. The following

is a list of logical operators:

•	 < less than

•	 > greater than

•	 <= less than or equal

•	 >= greater than or equal

Figure 4-8.  Program output for arithmetic operators

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

107

•	 == equal to

•	 != not equal to

•	 || or

•	 ! not

•	 && and

•	 xor[a,b] exclusive or

For further information, I recommend you read the Wolfram and

Mathematica documentation, https://reference.wolfram.com/

language/tutorial/RelationalAndLogicalOperators.html.

For demo purposes, we examine logical operators. Write the following

scripts.

m = 10

n = 5

m < n

m <= n

m > n

m >= n

m == n

m != n

(m < n) && (m > 10)

(m <= 2) || (n > 2)

You can see this program output in Figure 4-9.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

https://reference.wolfram.com/language/tutorial/RelationalAndLogicalOperators.html
https://reference.wolfram.com/language/tutorial/RelationalAndLogicalOperators.html

108

Figure 4-9.  Program output for logical operations

4.4.4  �Conditional Statements
Sometimes we want to manipulate data with a conditional.

In Mathematica, we can use the if and switch statements. We explore

these statements in the next sections.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

109

4.4.4.1  �if

We can write a Mathematica script for conditional statements, using the

If[] statement. The following is general statement of if[].

If[statement,do if true, do if false]

Let’s write this example:

x = 3;

y = 0;

If[x > 1, y = Sqrt[x], y = x^2];

Print[y]

m := If[x > 5, 1, 0];

Print[m]

You can type this program into Mathematica and you will get the

program output shown in Figure 4-10.

Figure 4-10.  Program output from an if application

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

110

4.4.4.2  �switch

You can select one of several options in Mathematica. You can use the

Switch[] statement. Switch[] can be defined as follows:

Switch[statement, case 1, do case 1, case n,do case n, _ ,

do default case]

A sample Switch[] script can be written as follows:

k = 2;

n = 0;

Switch[k, 1, n = k + 10, 2, n = k^2 + 3, _, n = -1];

Print[n]

k = 5;

n := Switch[k, 1, k + 10, 2, k^2 + 3, _, -1];

Print[n]

Note  Print[] is used to print a message on the Terminal.

Run the program. You will get the program output that is shown in

Figure 4-11.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

111

4.4.5  �Looping
If you perform continuous tasks, it’s wise to use a looping scenario to get

those tasks done. In Mathematica, you can perform looping using the

following statements:

•	 do statements

•	 for statements

•	 while statements

Each type of looping statement will be reviewed in the next sections.

4.4.5.1  �Do

The first looping statement is the Do[] statement. The Do[] statement can

be defined as follows:

Do[do_something, {index}]

index is the amount of looping.

Figure 4-11.  Program output sample for Switch[]

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

112

For instance, if you want to print “Hello Mathematica” five times, you

would write this script.

Do[Print["Hello Mathematica"], {5}]

Run the program in Mathematica. If you do so, you’ll get the response

shown in Figure 4-12.

Figure 4-12.  Program output for a do statement

You also can include an index number in the looping statement. You

can write this script for example:

Do[Print["counter ", i], {i, 5}]

After it’s executed, you’ll see the output shown in Figure 4-13.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

113

4.4.5.2  �For

If you have experience with C/C++, you can use a for statement in the

same way. The For[] statement in Mathematica is defined as follows:

For[initial,conditional, increment/decrement, do_something]

For testing purposes, you can print a message five times. Write this

script.

For[i = 0, i < 5, i++, Print["index ", i]]

Run the script and you’ll see the program output shown in Figure 4-14.

Figure 4-13.  Displaying an index on a looping program

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

114

4.4.5.3  �While

The last looping statement that we can use in Mathematica is While[].

This statement can be defined as follows:

While[conditional, do_something]

For demo purposes, write this script:

j = 0;

While[j < 5, Print["j=", j]; j++;]

This will print value 0 through value 4. You can see the program output

in Figure 4-15.

Figure 4-14.  A looping program with For[]

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

115

4.4.5.4  �Break and Continue

Break[] is used to exit the nearest enclosing loop. Continue[] is used to

go to the next step in the current loop. Try writing these scripts for demo

purposes:

For[i = 0, i < 10, i++,

 Print[i];

 If[i == 2, Continue[]];

 If[i == 5, Break[]]

]

The program will stop a moment when the value of i is 2. The program

also stops on value i = 5. You can see the program output in Figure 4-16.

Figure 4-15.  Looping program written with While[]

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

116

4.4.6  �Adding Comments
To add comments to your code, which is a very good idea, you can use the

(* *) characters. You should use comments in your scripts, which the

application will not run, to explain what certain lines of code and scripts

are meant to do. Figure 4-17 shows comments added to scripts.

Figure 4-17.  Adding comments to scripts

Figure 4-16.  Program demo using Break[] and Continue[]

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

117

4.4.7  �Functions
If you have scripts that are called continuously, consider using functions to

avoid redundant scripts. You can wrap them into a function. A function in

Mathematica can be defined as follows:

function[params_] := do_something

For testing purposes, we define a simple Mathematics function as

follows:

Clear[f, x, y];

f[x_] := (x - 2) * Sqrt[x];

Print[f[15]];

Print[f[8]];

You should get the program output shown in Figure 4-18 when you

execute these scripts.

Figure 4-18.  A function in Mathematica

In a function, you can define parameters as input. You can also add

two parameters or more. For instance, you can write these scripts.

Clear[f, x, y];

f[x_, y_] := x^2 + y;

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

118

Print[f[5, 8]];

Print[f[2, 3]];

The program output of these scripts can be seen in Figure 4-19.

Figure 4-19.  A function with parameters

You can implement a recursive function in Mathematica as well. For

instance, you can write these scripts:

(* recursive functions *)

ClearAll[h, n];

h[0] = 10;

h[n_] := 0.58 * h[n - 1];

Print[h[10]];

Now you can run this program. Figure 4-20 shows the program output

sample.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

119

4.5  �Computational Mathematics
This chapter explains how to work with computational mathematics using

Mathematica. We will discuss several mathematics problems as follows:

•	 Calculus

•	 Matrix

•	 Quadratic equations

•	 Linear equations

Let’s go.

4.5.1  �Calculus
There are many topics in calculus. In this section, we focus on plotting

an equation, defining limits, performing differentiation, performing

integration, and summing.

We explore these topics in the next sections.

Figure 4-20.  A sample of a recursive function

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

120

4.5.1.1  �Plot

We can use Plot[] to display a graph. You can read more about this

function at https://reference.wolfram.com/language/ref/Plot.html.

For demo purposes, we create two equations as follows.

f x

f x x
1

2
2 2

=
= -

cos

sin
On Mathematica, we can implement this as follows.

Plot[Cos[x], {x, 0, 3 Pi}]

Plot[x^2 - 2 Sin[x], {x, 0, 3 Pi}]

You can see the program output in Figure 4-21.

Furthermore, try some more examples. Plot the following equations.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

https://reference.wolfram.com/language/ref/Plot.html

121

f x

f x

f x

f x

1

2

3

4

0 1 1

0 5

=
=
= -
=

sin

cos

.

. sin

Those equations can be implemented in Mathematica as follows.

Figure 4-21.  Plotting math equations

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

122

Plot[{Sin[x], Cos[x], 0.1 x - 1, 0.5 Sin[x]}, {x, 0, 6 Pi},

 PlotLegends -> "Expressions"]

The program output from those scripts can be seen in Figure 4-22.

Figure 4-22.  Plotting the sin and cos equations

4.5.1.2  �Limits

We can implement limits in Mathematica using the Limit[] syntax.

For more information about this statement, check it out at https://

reference.wolfram.com/language/ref/Limit.html.

For testing purposes, we want to display our limit equation as follows.

lim
x

x

x®¥

+
+

6 1

2 5

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

https://reference.wolfram.com/language/ref/Limit.html
https://reference.wolfram.com/language/ref/Limit.html

123

We can implement this equation using Mathematica as follows.

HoldForm[Limit[(6 x + 1)/(2 x + 5), x -> Infinity]]

Figure 4-23 shows the program output from this script.

Figure 4-23.  Displaying limits

Let’s practice some more with this statement. See the following limit

problems. We want to calculate these limit equations.

lim

lim

lim

lim

x

x

x

x

x

x
x

x

x

x
x x

x

®¥

®¥

®

®

+
+

-
+ -

- +
-

6 1

2 5

1

25 5

7 10

2

2

2

0

2

2

You can implement these equations in Mathematica as follows.

(* compute limit *)

Limit[(6 x + 1)/(2 x + 5), x -> Infinity]

Limit[x^2/(1 - x^2), x -> Infinity]

Limit[(Sqrt[x + 25] - 5)/x, x -> 0]

Limit[(x^2 - 7 x + 10)/(x - 2), x -> 2]

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

124

The program output of these scripts can be found in Figure 4-24.

Figure 4-24.  Calculating more math limits

4.5.1.3  �Differentiation

In this section, we use differentiation. We can use the D[] syntax to

implement differentiation. Read more about it at https://reference.

wolfram.com/language/ref/D.html.

For testing purposes, consider the following problem.

f x x

f x
df

dx

() =

() = =¼¢

2

??

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

https://reference.wolfram.com/language/ref/D.html
https://reference.wolfram.com/language/ref/D.html

125

The following is the implementation of this problem in Mathematica.

D[x^2, x]

Run this script. You can see the program output in Figure 4-25.

Figure 4-25.  Calculating differentiation

Let’s try some more examples. Consider the following differentiation

problems.

f x
x

x

f x

x
f x x e x

f x xe

x

x

() = +

() =
+

() =
() =

3

2

2

4

1

1

1
1

2cos

log

A simple solution in Mathematica follows.

(* compute *)

D[(x^3/4) + (1/x^2), x]

D[1/(1 + 1/x), x]

D[x^2 e^x Cos[2 x], x]

D[Log[x e^x], x]

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

126

The program output is shown in Figure 4-26.

Figure 4-26.  Solving differentiation problems

4.5.1.4  �Integration

In this section, we perform two integration models—indefinite integrals

and definite integrals. We explore both of these models.

4.5.1.4.1  Indefinite Integrals

First, we explore the indefinite integral. You can implement indefinite

integrals using the Integrate[] statement. For more information about

this statement, visit https://reference.wolfram.com/language/ref/

Integrate.html.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

https://reference.wolfram.com/language/ref/Integrate.html
https://reference.wolfram.com/language/ref/Integrate.html

127

For instance, consider the following math problems.

f x x

f x dx xdx

() =
ò () = ò =¼

2

2 ??

You can implement this in Mathematica, using Integrate[] as follows.

Integrate[2 x, x]

The program output from Mathematica can be seen in Figure 4-27.

Figure 4-27.  Calculating a math integral

Let’s try some more examples. The following are more indefinite

integral problems.

ò
+

ò

ò() + ()
ò()

1

4 3

3 3

4 2

2 2

6

x
dx

x x dx

x x dx

x dx

sin cos

sin cos

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

128

You can solve those problems in Mathematica. You can write these

scripts:

Integrate[1/(4 + 3 x), x]

Integrate[Sin[x] Cos[x], x]

Integrate[Sin[3 x]^2 + Cos[3 x]^2, x]

Integrate[(4 x - 2)^6, x]

You can see the solution in Figure 4-28.

Figure 4-28.  Solving indefinite integral problems

4.5.1.4.2  Definite Integrals

To implement a definite integral, you set the starting and ending values

of the Integrate[] statement. Consider the following definite integral

problems, for example.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

129

0

5
2

0

1

0

2
5

0

2

0

2

2

1

2 5

ò

ò

ò

ò

ò

()

+

x dx

xe dx

x x dx

x x dx

x
dx

x

p

p

cos sin

cos

You can solve those problems in Mathematica as follows.

(* definite integral *)

Integrate[x ^2, {x, 0, 5}]

Integrate[x e^(x^2), {x, 0, 1}]

Integrate[Cos[x] Sin[x]^5, {x, 0, Pi/2}]

Integrate[x Cos[x], {x, 0, Pi/2}]

Integrate[1/(2 x + 5), {x, 0, 2}]

The program output is shown in Figure 4-29.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

130

Figure 4-29.  Solving definite integral problems

4.5.1.5  �Summing

In mathematics, there are many math problems related to summation. You

can use Sum[] to calculate sums. For further information about Sum[], you

can visit https://reference.wolfram.com/language/ref/Sum.html.

For instance, we have a formula as follows.

i

i
=
å =¼

0

10

2 ..??

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

https://reference.wolfram.com/language/ref/Sum.html

131

You can calculate that problem using Mathematica. Write scripts in

Mathematica as follows.

Sum[2 i, {i, 10}]

You can see the program output in Figure 4-30.

Figure 4-30.  Calculating summation in Mathematica

Let’s look at some more examples. The following are summation

problems.

i

i

n

i

i

i

=

=

å

å

-

5

10

0

2 3

5

4

You can solve these problems in Mathematica. You can write these

scripts.

Sum[(2 i - 3)/5 i, {i, 5, 10}]

Sum[4 i, {i, n}]

Run these scripts in Mathematica. You should get the output shown in

Figure 4-31.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

132

4.5.2  �Matrix
In Mathematica, you can display a matrix using MatrixForm[].

For instance, say you want to display this matrix.

a

b

c

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 2 3

4 5 6

7 8 9

In Mathematica, you can formulate that matrix with the following

scripts.

(* matrix *)

MatrixForm[{a, b, c}]

MatrixForm[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]

Run the script to see the matrix forms. The program output is shown in

Figure 4-32.

Figure 4-31.  Solving summation problems in Mathematica

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

133

You also can display a matrix using // MatrixForm. Write this script.

k = {{a, b, c}, {d, e, f}};

k // MatrixForm

Now we do matrix operations such as addition, subtraction, and

multiplication. Consider the following cases.

5

6

2 3

4 2

7 8

10 8

5

6

2 3

4 2

3 2

2

æ

è
ç

ö

ø
÷ +

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷

-
æ

è
ç

ö

ø
÷ +

æ

è
ç

ö

ø
÷ =

- -
- --

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ ×
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷

4

2 3

4 2

5

6

28

32

Figure 4-32.  Displaying a matrix in Mathematica

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

134

You can implement them in Mathematica scripts as follows.

(* matrix operations *)

Clear[m, n];

m = {{2, 3}, {4, 2}};

n = {5, 6};

(n // MatrixForm) + (m // MatrixForm) == (m + n // MatrixForm)

(m // MatrixForm) - (n // MatrixForm) == (m - n // MatrixForm)

(m // MatrixForm) . (n // MatrixForm) == (m . n // MatrixForm)

The program output is shown in Figure 4-33.

Figure 4-33.  Solving matrix operations

If you want to transpose a matrix, you can use Transpose[].

For instance, consider this matrix as an example.

2 3 4

5 6 7

æ

è
ç

ö

ø
÷

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

135

You can transpose this matrix with the following scripts.

(* Transpose *)

L = {{2, 3, 4}, {5, 6, 7}};

L // MatrixForm

Transpose[L] // MatrixForm

Run these scripts and you should get program output shown in

Figure 4-34.

Figure 4-34.  Transposing a matrix

You can find determinants, inverses, and matrix ranks from a matrix as

well. For instance, consider this matrix.

2 4

7 8

æ

è
ç

ö

ø
÷

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

136

To calculate a determinant, inverse, and rank using Mathematica, you

would use the following scripts:

(* Determinant *)

A = {{2, 4}, {7, 8}};

A // MatrixForm

Det[A]

Inverse[A] // MatrixForm

MatrixRank[A]

The program output from these scripts can be seen in Figure 4-35.

Figure 4-35.  Calculating determinant, inverse, and matrix rank from
a matrix

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

137

4.5.3  �Quadratic Equations
We find values of unknown parameters in quadratic equations using

Solve[]. For more information about the Solve[] statement, visit

https://reference.wolfram.com/language/ref/Solve.html.

For instance, we have the quadratic equation shown here.

x x2 3 4 0- =

Now we can find the x values using Solve[].

(* Quadratic Equations *)

Solve[x^2 - 3 x - 4 == 0, x]

Run the program and you will see that the x values are -1 and 4.

The program output is shown in Figure 4-36.

Figure 4-36.  Solving quadratic equations

Let’s look at some other examples. The following are quadratic

equation problems. Find the x values.

x

x x

x x

2

2

2

4 0

6 11 35 0

7 0

- =
+ - =
- =

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

https://reference.wolfram.com/language/ref/Solve.html

138

Those problems can be solved in Mathematica. You can write these

scripts to solve for x.

Solve[x^2 - 4 == 0, x]

Solve[6 x^2 + 11 x - 35 == 0, x]

Solve[x^2 - 7 x == 0, x]

The program output from Mathematica can be seen in Figure 4-37.

Figure 4-37.  Quadratic equation solutions in Mathematica

4.5.4  �Linear Equations
In linear equations, we solve to find values from a set of parameters.

We can use the Solve[] statement in Mathematica to do this. For more

information about this statement, visit https://reference.wolfram.com/

language/ref/Solve.html.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

https://reference.wolfram.com/language/ref/Solve.html
https://reference.wolfram.com/language/ref/Solve.html

139

Figure 4-38.  Solving linear equations using Mathematica

For instance, we have three equations:

x y z

x y z

x y z

+ + =
+ + =
- + =

0

2 3 1

2

We can find the x, y, and z values in Mathematica.

Solve[{x + y + z, x + 2 y + 3 z, x - y + z} == {0, 1, 2}]

Another problem you can solve is as follows.

3 0

2 1

3

x y

y z

x y z

- =
+ =
+ + =

The solutions from these problems in Mathematica are as follows.

Solve[{3 x - y, y + 2 z, x + y + z} == {0, 1, 3}]

Run all these scripts. You’ll see the program output in Figure 4-38.

CHAPTER 4 COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA�

140

You can see the x, y, and z values.

Now we have another problem. The w parameter shown here is a

constant value.

2 3 7 8

4 2 2 4

5 4 3 6

x y z w

x y z w

x y z w

+ - + =
- + + =
+ - + =

The solutions are written in Mathematica, as shown in the following

script.

Solve[{2 x + 3 y - 7 z + w, 4 x - 2 y + z + 2 w, 5 x + y - 4 z +

3 w} == {8, 4, 6}]

The program output can be seen in Figure 4-39.

Figure 4-39.  Solving linear equations using Mathematica

4.6  �Summary
In this chapter, you learned about the Wolfram and Mathematica programs

in Raspbian OS that run on Raspberry Pi boards. You also played math

games such as computational mathematics to see how to work with

Mathematica.

In the next chapter, we focus on visual programming using Scratch on

the Raspbian OS and Raspberry Pi boards.

CHAPTER 4 �COMPUTATIONAL MATHEMATICS WITH THE WOLFRAM
LANGUAGE AND MATHEMATICA

141© Agus Kurniawan 2019
A. Kurniawan, Raspbian OS Programming with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4212-4_5

CHAPTER 5

Visual Programming
with Scratch
Scratch is a visual programming application that you can use to write

programs visually. In this chapter, we explore the Scratch application by

creating blocks to build programs visually.

The following is a list of topics covered in this chapter:

•	 Learn about visual programming

•	 Set up Scratch

•	 Develop a hello program

•	 Work with Sprites

•	 Work with backgrounds

•	 Work with motion

•	 Work with controls

142

5.1  �Introducing Visual Programming
and Scratch

Visual programming is a programming method that you can use to develop

programs without writing codes/scripts directly. You can click and drag

components or modules into the board and the tool will generate codes

from your visual models.

In this chapter, we explore visual programming with Scratch. Scratch

is a free desktop and online multimedia authoring tool that can be used by

students, scholars, teachers, and parents to easily create games. It provides

a stepping-stone to the more advanced world of computer programming.

It can even be used for a range of educational and entertainment purposes,

from math and science projects, including simulations and visualizations

of experiments, recording lectures with animated presentations, to social

sciences animated stories, and interactive art and music. See Figure 5-1.

Figure 5-1.  The Scratch application on Raspberry Pi with Raspbian OS

Chapter 5 Visual Programming with Scratch

143

5.2  �Setting Up Scratch
By default, the Scratch application has been installed in the Raspbian

desktop on the Raspberry Pi board. You can access the Scratch and

Scratch 2 applications from the Programming menu, which is on the

main menu (see Figure 5-2).

In this chapter, we only explore the Scratch 2 application. We learn

how to build and run programs.

Figure 5-2.  The Scratch application on the main menu

5.3  �Developing a Hello Program
In this section, you see how to build a Scratch program for a hello world

application. Follow the steps in the next sections.

5.3.1  �Creating a Project
First, open the Scratch application and create a new program by choosing

File ➤ New, as shown in Figure 5-3.

Chapter 5 Visual Programming with Scratch

144

You’ll get a blank script, as shown in Figure 5-4.

Figure 5-3.  Creating a new project

Figure 5-4.  The Scratch Editor

Chapter 5 Visual Programming with Scratch

145

Figure 5-4 shows the Scratch Editor. You build Scratch programs using

the Script Editor panel. All the blocks that are used to develop Scratch

programs can be taken from the Blocks panel. Each block is collected into

a group.

•	 Motion

•	 Looks

•	 Sound

•	 Pen

•	 Data

•	 Events

•	 Control

•	 Sensing

•	 Operators

You can simply click and drag from the Blocks panel to the Script

Editor. Last, you can see a running panel that shows how your program

runs.

5.3.2  �Building a Scratch Program
For demo purposes, this example shows the “Hello Raspberry Pi” text

on the sprite when it’s clicked. Click Events from the palates area (on the

Scripts tab). You will see a list of Scratch blocks for the Events blocks, as

shown in Figure 5-5.

Chapter 5 Visual Programming with Scratch

146

Click the When “Green Flag” Clicked block. Click and hold it to move it

to the Script Editor. You can see the result in Figure 5-6.

Figure 5-5.  Listing the blocks on Events

Chapter 5 Visual Programming with Scratch

147

Now click Looks from the Scripts tab. You will see the Say “Hello!”

block. Click and hold it. Then, move it into the editor. You can see the

result in Figure 5-7.

Figure 5-6.  Adding a block to the Script Editor

Chapter 5 Visual Programming with Scratch

148

Change the text from “Hello” to “Hello Raspberry Pi”. You have

officially created your first Scratch program. Now you are ready to run it.

5.3.3  �Running the Program
To run a Scratch program, you can click the Green Flag icon on the top-

right of the running panel. After it’s clicked, you should see the message

“Hello Raspberry Pi” spoken by the Sprite cat. You can see these results in

Figure 5-8.

Figure 5-7.  Adding the Say “Hello” block

Chapter 5 Visual Programming with Scratch

149

5.3.4  �Saving a Program Into a File
If you want to save a Scratch program, you can do so by choosing File ➤

Save Project, as shown in Figure 5-9. You will get a dialog box to store the

Scratch program file. Fill in the filename of your project. When you’re

done, click the OK button.

Figure 5-8.  An example of running a Scratch program

Chapter 5 Visual Programming with Scratch

150

5.4  �Working with Sprites
If you see a character image on the running panel, it is a sprite. You can

change the sprites in your program. To change your sprite, click the sprite

icon in Figure 5-10.

Figure 5-9.  Saving a project into a file

Chapter 5 Visual Programming with Scratch

151

After you click this icon, you’ll see a list of sprites, as shown in

Figure 5-11. You can select one of your favorite Sprites.

Figure 5-10.  Adding a new sprite

Chapter 5 Visual Programming with Scratch

152

After selecting a sprite, you can see your selection in the panel, as

shown in Figure 5-12.

Figure 5-11.  A list of sprites in Scratch

Chapter 5 Visual Programming with Scratch

153

When you click a sprite on the bottom-left panel, you should see the

Script Editor. This means each sprite has own Scratch program. For demo

purposes, add the same scripts as the previous sprite script. You can see

my script code for the second sprite in Figure 5-13.

Figure 5-12.  Adding additional sprites to the panel

Chapter 5 Visual Programming with Scratch

154

Now click the Green Flag icon to run this demo. You can see my demo

in Figure 5-14.

Figure 5-13.  Adding scripts to the second sprite

Chapter 5 Visual Programming with Scratch

155

5.5  �Working with the Background
You also can change the Scratch program background. First, you need

to add a background file by clicking the image icon. See the arrow in

Figure 5-15.

Figure 5-14.  Running a Scratch program with two sprites

Chapter 5 Visual Programming with Scratch

156

After it’s been clicked, you should get a dialog that displays a list of

backgrounds. You can see this list in Figure 5-16.

Figure 5-15.  Clicking the image icon

Chapter 5 Visual Programming with Scratch

157

Figure 5-16.  A list of backgrounds for your Scratch programs

Chapter 5 Visual Programming with Scratch

158

If you use the first demo Scratch program and try to run it, you should

see the program output shown in Figure 5-18.

Figure 5-17.  A Scratch program with a custom background

After you select a background, you should see that the current panel

background changes, as shown in Figure 5-17.

Chapter 5 Visual Programming with Scratch

159

5.6  �Working with Motion
In this section, you learn to move your sprites using the Motion palette.

You can see the Motion palette in Figure 5-19.

Figure 5-18.  A hello Scratch program with a custom
background

Chapter 5 Visual Programming with Scratch

160

5.6.1  �Coordinate System and Direction
To move a sprite in a stage, you first need to understand how coordinate

systems work on the stage. For instance, you can see a sprite in a stage,

shown in Figure 5-20.

Figure 5-19.  A list of blocks in the Motion palette

Chapter 5 Visual Programming with Scratch

161

Point (0,0) is located on the middle of the stage. You can move this

sprite using your mouse by clicking and holding the sprite. You can also

get information about the sprite location, for instance, a sprite is located at

x=0, y=0.

You can change the sprite direction by clicking and holding the sprite.

Then move it using the mouse. Then, you can see the sprite direction

output on the stage.

Figure 5-20.  The coordinate system on Scratch

Chapter 5 Visual Programming with Scratch

162

5.6.2  �Demo 1: Movement
This demo shows you how to move a sprite on the stage. The following is

our scenario:

•	 A sprite starts on x=0, y=0

•	 Move it 10 steps

•	 Move it another 10 steps

•	 Turn direction about 45 degrees

The program implementation can be seen in Figure 5-21.

Figure 5-21.  Implementing a movement program

Save this program into a project file. To run it, you can simply click

the Green Flag icon. You can see an example of the project output in

Figure 5-22.

Chapter 5 Visual Programming with Scratch

163

5.6.3  �Demo 2: Direction
The second demo builds a program for changing the sprite’s direction. Our

scenario is defined as follows:

•	 Change the sprite’s direction 90 degrees

•	 Move the sprite from x=0, y=0

•	 Glide the sprite to x=300, y=0

•	 Add a conditional whereby, if the sprite is on an edge

position, it will bounce

For implementation, you can build the program shown in Figure 5-23.

Figure 5-22.  Running the Scratch application

Chapter 5 Visual Programming with Scratch

164

Save this program into a project file. To run it, click the Green Flag icon.

See Figure 5-24.

Figure 5-23.  Scratch program for demo 2

Figure 5-24.  Running a Scratch program for direction

Chapter 5 Visual Programming with Scratch

165

5.7  �Working with Control Blocks
You can see many different items on the Control palette. Technically, these

items consist of decision and looping actions. In this chapter, we explore

how to build Scratch programs using the decision and looping actions.

5.7.1  �Building a Decision
To build a decision, you can use if..else command, which is located on

the Control palette. You can see a list of blocks on the Control palette in

Figure 5-25.

For demo purposes, we build a Scratch app with the following features:

•	 Define two variables, numA and numB

•	 Set a random value for numA and numB

•	 Check and compare numA and numB

Chapter 5 Visual Programming with Scratch

166

Figure 5-25.  Blocks on the Control palette

Chapter 5 Visual Programming with Scratch

167

To implement the program, you can follow these instructions.

First, drag the When “Green Flag” Clicked block to the Script Editor.

Next, you need to define the variables, called numA and numB, which can be

found on the Data blocks. See Figure 5-26.

Figure 5-26.  Defining the variables

When you’re done, you can see your two variables. You can also see

blocks related to your variables in Figure 5-27.

Chapter 5 Visual Programming with Scratch

168

Drag two Set Variable To blocks onto the Script Editor, as shown in

Figure 5-28.

Figure 5-27.  Adding data blocks

Chapter 5 Visual Programming with Scratch

169

Replace the variable values, numA and numB, with the Pick Random 1 To

10 block from the Operators category. See Figure 5-29.

Figure 5-28.  Putting variables on the editor

Chapter 5 Visual Programming with Scratch

170

After that, you can drag the if..else block from the Control palette.

For conditional values on the if..else command, you use comparison

operators. Drag the x < y comparison block from the Operators palette.

Assign if-conditional to the numA and numB variables. The resulting form

can be seen in Figure 5-30.

Figure 5-29.  Setting random variables

Chapter 5 Visual Programming with Scratch

171

Now add Say “B is bigger” and “A is bigger” to the responses for

the if..else command. As an example, you can see my script form in

Figure 5-31.

Figure 5-30.  Adding an if-else block

Chapter 5 Visual Programming with Scratch

172

Save this program into a project file. Run this program by clicking the

Green Flag icon. Figure 5-32 shows the result.

Figure 5-31.  Adding an if-else block

Figure 5-32.  Running Scratch program with if-else block

Chapter 5 Visual Programming with Scratch

173

5.7.2  �Looping
There are many options for building a Scratch program using looping. You

can see them in Figure 5-33.

Figure 5-33.  Putting the Repeat block into the script

For demo purposes, you’ll build a program that loops a random value.

First, drag the When “Green Flag” Clicked block from the Events palette.

Then, drag the Repeat 10 block from the Control palette. The resulting

form is shown in Figure 5-33.

Change the 10 value using the Pick Random 1 to 10 block from the

Operators palette. Last, you can drag the Say Hello! for 2 Secs block inside of

the Repeat Command block. You can see the resulting script in Figure 5-34.

Chapter 5 Visual Programming with Scratch

174

Save this program into a project file.

Now you can run the program by clicking the Green Flag icon. The

program will display Hello! x times (x is a random value from 1 to 10). You

can see my running program in Figure 5-35.

Figure 5-34.  Final Scratch program for looping

Figure 5-35.  Running the looping program in Scratch

Chapter 5 Visual Programming with Scratch

175

What’s next?

It’s a good idea to practice more with the various script blocks in

Scratch. You also can see project examples that people have uploaded onto

the Scratch website at https://scratch.mit.edu.

5.8  �Summary
In this chapter, you learned how to work with the Scratch application to

develop programs visually. The chapter reviewed several blocks—such

as sprites, backgrounds, motions, and control blocks—and you were able

to run many examples for practice. Visit the official website, https://

scratch.mit.edu, to get inspired and to develop your own Scratch

programs.

Chapter 5 Visual Programming with Scratch

https://scratch.mit.edu
https://scratch.mit.edu
https://scratch.mit.edu

177© Agus Kurniawan 2019
A. Kurniawan, Raspbian OS Programming with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4212-4

Index

A
Arithmetic

operators, 105–106

B
Building, hello world

application, 145–148

C
chmod command, 61–62
chown command, 63
Computational mathematics,

Mathematica
calculus

differentiation, 124–126
integration models,

126–128, 130
Limit[] syntax, 122–124
Plot[], 120–122
Sum[], 130–131

linear equations, 138, 140
matrix

determinant, inverse, and
rank, calculation, 136

displaying, 133

operations, solving, 134
transposing, 135

quadratic equations, 137–138

D
Definite integral, 128–130

E
Etcher application, 8

F, G, H
Files and directories, manipulating

copying, 46
current directory,

changing, 38–39, 41
current working directory,

getting, 34
deleting, 45
listing, ls command, 34–36
ls command, parameters, 37–38
mkdir command, directory

creation, 42, 44
moving, 50–51
removing, 44
symbolic link, creation, 52

https://doi.org/10.1007/978-1-4842-4212-4

178

I, J, K
Indefinite integral, 126–128

L
Looping, Mathematica

Break[], 115–116
Continue[], 115–116
Do[] statement, 111–112
For[] statement, 113
While[], 114–115

M
Media storage

free disk space, display, 72
mount command, 73, 75–76
umount command, 77

microSD card, 7
mount command, 73–76

N, O
Node.js Programming, 90–94

P, Q
Permissions in Raspbian

chmod command, 61–62
chown command, 63
display, 58–59
id command, 57–58
information, 60

Pipelines, 56–57

Processes in Raspbian
free memory,

display, 71
kill command, 70–71
ps command, 64–68
top command, 68–70

Process identification numbers
(PIDs), 64

Process ID (PID), 70
Programming

C/C++, 94–96
Node.js, 90–94
python (see Python

programming)
Raspbian OS

desktop mode, 80–82
office tools, 81
remote SSH Python

access, 82–83
setting up, environment, 83

Python programming
Python 3 (IDLE), 84–85
remote SSH, 88–90
Thonny IDE, 85–88

R
Raspberry Pi

board, 3–5
Compute Module v3, 5
definition, 2–3
expanding disk, 10–11
models comparison, 4–5
OS, 5–8

Index

179

Raspbian Scratch OS
desktop, 13–16

shutdown process, 24–25
SSH network, 8–10
WiFi network,

configuration, 12–13
Zero, 3–4

Raspbian shells
desktop mode, 28
files and directories (see Files

and directories,
manipulating)

keyboard, configuration, 33
rebooting Raspbian OS, 30
remote SSH, 29
shutting down, 30
timezone, configuration, 31, 33

Redirection, command-line
programs

pipelines, 56–57
standard error, 55
standard input, 54–55
standard output, 53–54

S
Scratch application, 142–143
Scratch program

background
custom, 158
hello Scratch program, 159
image icon, 156
list of, 157

control palette, 165

decision, build
blocks, control palette,

165–166
data blocks, 168
if-else block, adding, 171
if..else command, 165
random variables,

setting, 170
running, if-else block, 172
variables, defining, 167
variables, Script

Editor, 169
hello world application

building, 145–146, 148
project, creation, 144–145
running, 148–149
saving, 150

looping, 173–174
motion palette

blocks list, 160
coordinate system, 161
direction, 163–164
movement program,

implementation, 162–163
setting up, 143
sprites

adding scripts, 151, 153–154
list, 151
running, 155

T
Thonny Python IDE

application, 85–88

Index

180

U
umount command, 77

V
Visual programming, 142
VNC server

boot options, 20
configuration, 16
desktop autologin, 21
enabling, 18–19
installation, 17
testing, 21–24

W, X, Y, Z
Wolfram Language and

Mathematica

adding comments, 116
arithmetic operators, 105–106
conditional statements, 108

If[], 109
Switch[], 110–111

data types, 104
function, 117–119
Hello World Program, 102
icons, Raspbian bar, 98
logical operators, 106–108
looping (see Looping,

Mathematica)
Mathematica application,

execution, 100
menu options, 99
setting up, 101
terminal application, 99
variables declaration, 104

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Raspberry Pi
	1.1 What Is Raspberry Pi?
	1.2 Reviewing the Raspberry Pi Board Models
	1.3 Introducing the Raspbian OS
	1.4 Setting Up Raspbian OS on Raspberry Pi Boards
	1.5 Headless Raspbian SSH Network Setup
	1.6 Expanding Storage
	1.7 Configuring a WiFi Network
	1.8 Exploring the Raspbian OS Desktop and Terminal
	1.9 Configuring the VNC Server
	1.9.1 Installing the VNC Server
	1.9.2 Enabling the VNC Server
	1.9.3 Configuring Boot Options for the Desktop
	1.9.4 Testing the Server

	1.10 Powering Off the Raspbian
	1.11 Summary

	Chapter 2: The Raspbian OS Command Line
	2.1 Introducing Raspbian Shells
	2.2 The Basic Raspbian Shell
	2.2.1 Rebooting Raspbian OS
	2.2.2 Shutting Down
	2.2.3 Configuring the Timezone
	2.2.4 Configuring the Keyboard

	2.3 Manipulating Files and Directories
	2.3.1 Getting the Current Working Directory
	2.3.2 Listing Files and Directories
	2.3.3 Understanding the ls Parameters
	2.3.4 Changing the Current Working Directory
	2.3.5 Creating a Directory
	2.3.6 Removing Files and Directories
	2.3.7 Copying Files and Directories
	2.3.8 Moving Files and Directories
	2.3.9 Creating Symbolic Links

	2.4 Redirection
	2.4.1 Standard Output
	2.4.2 Standard Input
	2.4.3 Standard Error
	2.4.4 Pipelines

	2.5 Permissions
	2.5.1 Understanding Permissions
	2.5.2 chmod
	2.5.3 chown

	2.6 Manipulating Processes
	2.6.1 ps
	2.6.2 top
	2.6.3 Killing Processes
	2.6.4 Viewing Memory

	2.7 Media Storage
	2.7.1 Displaying Free Disk Space
	2.7.2 mount
	2.7.3 umount

	2.8 Summary

	Chapter 3: Programming on Raspbian OS
	3.1 Understand the Programming Model in Raspbian OS
	3.2 Setting Up the Programming Environment
	3.3 Python Programming
	3.3.1 Python 3 (IDLE)
	3.3.2 Thonny Python IDE
	3.3.3 Python Shell from Remote SSH
	3.3.4 What’s Next?

	3.4 Node.js Programming
	3.5 C/C++ Programming
	3.6 Summary

	Chapter 4: Computational Mathematics with the Wolfram Language and Mathematica
	4.1 Introducing Wolfram Language and Mathematica
	4.2 Setting Up Wolfram and Mathematica
	4.3 Developing a Hello World Program
	4.4 Basic Programming
	4.4.1 Data Types and Declaring Variables
	4.4.2 Arithmetic Operators
	4.4.3 Relational and Logical Operators
	4.4.4 Conditional Statements
	4.4.4.1 if
	4.4.4.2 switch

	4.4.5 Looping
	4.4.5.1 Do
	4.4.5.2 For
	4.4.5.3 While
	4.4.5.4 Break and Continue

	4.4.6 Adding Comments
	4.4.7 Functions

	4.5 Computational Mathematics
	4.5.1 Calculus
	4.5.1.1 Plot
	4.5.1.2 Limits
	4.5.1.3 Differentiation
	4.5.1.4 Integration
	4.5.1.4.1 Indefinite Integrals
	4.5.1.4.2 Definite Integrals

	4.5.1.5 Summing

	4.5.2 Matrix
	4.5.3 Quadratic Equations
	4.5.4 Linear Equations

	4.6 Summary

	Chapter 5: Visual Programming with Scratch
	5.1 Introducing Visual Programming and Scratch
	5.2 Setting Up Scratch
	5.3 Developing a Hello Program
	5.3.1 Creating a Project
	5.3.2 Building a Scratch Program
	5.3.3 Running the Program
	5.3.4 Saving a Program Into a File

	5.4 Working with Sprites
	5.5 Working with the Background
	5.6 Working with Motion
	5.6.1 Coordinate System and Direction
	5.6.2 Demo 1: Movement
	5.6.3 Demo 2: Direction

	5.7 Working with Control Blocks
	5.7.1 Building a Decision
	5.7.2 Looping

	5.8 Summary

	Index

